SuperNotes by yuri.rodrix

Notas de YuriRod


Página tipo blog en el que voy a publicar mis notas de aprendizaje, en especial de temas como matemáticas, física y quizá algo de programación

Redes neuronales
Redes neuronales
Redes neuronales
Redes neuronales
Redes neuronales
Redes neuronales

Métodos numéricos



Método de bisección


f(x)

iaba+b/2f(a)f(b)f((a+b)/2)
0111-3-3-3
1111-3-3-3
2111-3-3-3
3111-3-3-3
4111-3-3-3
5111-3-3-3
6111-3-3-3


Método de Newton-Raphson


f(x)

f(x)=7 (x7)3+1f(x)=7~{\left(\frac{ x}{7}\right)}^{3}+1fx(x)=x2349\textcolor{#6fbdd7}{f_x(x)}= \frac{{ x}^{2}\cdot3}{49}
xi=xif(xi)/fx(xi)x_i = x_i - f(x_i)/f_x(x_i)
iixix_if(xi)f(x_i)fx(xi)f_x(x_i)f(xi)/fx(xi)\small f(x_i)/f_x(x_i)
07.49.2698775510204093.03221937861145462.764937910883857
14.6350620891161433.03221937861145461.25807616610917952.305283447841186
22.32977864127495731.25807616610917950.93701075611069873.7857544474658056
3-1.45597580619084830.9370107561106987-12.325813326020137.219565896231227
4-8.675541702422075-12.32581332602013-3.4097182185929684-2.67483629729273
5-6.000705405129345-3.4097182185929684-0.8033260141319922-1.5466380941688485
6-4.454067310960497-0.8033260141319922-0.11338140894564752-0.6613831168166513
7-3.7926841941438454-0.11338140894564752-0.0038051905970828415-0.12874290701666435


Codificación binaria


x=

x=2 π+e=9.00146713563863\Large x=2~\pi+ e = 9.00146713563863
(x)2=1001.000000000110000000100110011100111001011000110011\Large (x)_2= 1001.000000000110000000100110011100111001011000110011

Entero

(x1)10=9 (x_1)_{10}= 9 (x1)2=1001 (x_1)_2= 1001
9/2=14 9/2 = 1|4
4/2=02 4/2 = 0|2
2/2=01 2/2 = 0|1
1/2=10 1/2 = 1|0

Decimal

(x2)10=0.001467135638631 (x_2)_{10}= 0.001467135638631 (x2)2=0.00000000011000000010011001110011100101100011001100001000101111 (x_2)_2= 0.00000000011000000010011001110011100101100011001100001000101111
0.001467135638631×2=0.002934271277262N=0 0.001467135638631 \times 2 = 0.002934271277262 |_{\mathbb{N}} = 0
0.002934271277262×2=0.005868542554524N=0 0.002934271277262 \times 2 = 0.005868542554524 |_{\mathbb{N}} = 0
0.005868542554524×2=0.011737085109048N=0 0.005868542554524 \times 2 = 0.011737085109048 |_{\mathbb{N}} = 0
0.011737085109048×2=0.023474170218096N=0 0.011737085109048 \times 2 = 0.023474170218096 |_{\mathbb{N}} = 0
0.023474170218096×2=0.046948340436192N=0 0.023474170218096 \times 2 = 0.046948340436192 |_{\mathbb{N}} = 0
0.046948340436192×2=0.093896680872384N=0 0.046948340436192 \times 2 = 0.093896680872384 |_{\mathbb{N}} = 0
0.093896680872384×2=0.187793361744768N=0 0.093896680872384 \times 2 = 0.187793361744768 |_{\mathbb{N}} = 0
0.187793361744768×2=0.375586723489536N=0 0.187793361744768 \times 2 = 0.375586723489536 |_{\mathbb{N}} = 0
0.375586723489536×2=0.751173446979072N=0 0.375586723489536 \times 2 = 0.751173446979072 |_{\mathbb{N}} = 0
0.751173446979072×2=1.502346893958144N=1 0.751173446979072 \times 2 = 1.502346893958144 |_{\mathbb{N}} = 1
0.502346893958144×2=1.004693787916288N=1 0.502346893958144 \times 2 = 1.004693787916288 |_{\mathbb{N}} = 1
0.004693787916288×2=0.009387575832576N=0 0.004693787916288 \times 2 = 0.009387575832576 |_{\mathbb{N}} = 0
0.009387575832576×2=0.018775151665152N=0 0.009387575832576 \times 2 = 0.018775151665152 |_{\mathbb{N}} = 0
0.018775151665152×2=0.037550303330304N=0 0.018775151665152 \times 2 = 0.037550303330304 |_{\mathbb{N}} = 0
0.037550303330304×2=0.075100606660608N=0 0.037550303330304 \times 2 = 0.075100606660608 |_{\mathbb{N}} = 0


Matrix


0x+0y+0z=00x+0y+0z=00x+0y+0z=0 0x+0y+0z=0\\0x+0y+0z=0\\0x+0y+0z=0 =
R1R1
R2R2
R3R3
[000000000][xyzabcdef]=[000000000] \Large \begin{bmatrix} 0&0&0\\0&0&0\\0&0&0 \end{bmatrix} \begin{bmatrix} x&y&z\\a&b&c\\d&e&f \end{bmatrix} = \begin{bmatrix} 0&0&0\\0&0&0\\0&0&0 \end{bmatrix}
R1
R2
R3
0x+0y+0z=00x+0y+0z=00x+0y+0z=0 0x+0y+0z=0\\0x+0y+0z=0\\0x+0y+0z=0 =
R1+R1+
R2+R2+
R3+R3+
[000000000][xyzabcdef]=[000000000] \Large \begin{bmatrix} 0&0&0\\0&0&0\\0&0&0 \end{bmatrix} \begin{bmatrix} x&y&z\\a&b&c\\d&e&f \end{bmatrix} = \begin{bmatrix} 0&0&0\\0&0&0\\0&0&0 \end{bmatrix}
R1
R2
R3