SuperNotes by yuri.rodrix

Notas de YuriRod


Página tipo blog en el que voy a publicar mis notas de aprendizaje, en especial de temas como matemáticas, física y quizá algo de programación

Redes neuronales
Redes neuronales
Redes neuronales
Redes neuronales
Redes neuronales
Redes neuronales

Transformada y series de Fourier

Serie de Fourier de f(x)\Large f(x)

Toda funcion periódica puede ser expresada como serie de Fourier

f(x)=n=0(Ancos(2nπxT)+Bnsin(2nπxT))\Large f(x)=\sum_{n=0}^{\infty } \left( A_n \cos( \frac{2n\pi x}{T} )+B_n\sin( \frac{2n\pi x}{T}) \right)

Simil con el vector

Base ortonormal canónica
{en}n=1\Large \{e_n\}^\infty_{n=1}
Base ortonormal Serie de Fourier
{cos(nx),sin(nx)}n=1\Large \{\cos(nx), \sin(nx) \}^\infty_{n=1}
Vector genérico en dicha base de ejemplo:
v=n=1vnen\overrightarrow{v} = \sum_{n=1}^{\infty} \textcolor{#3DBBE9}{v_n} \textcolor{#ffb764}{\overrightarrow{e_n}}
f(x)=n=0(Ancos(nx)+Bnsin(nx))f(x) = \sum_{n=0}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \textcolor{#ffb764}{\cos( n x )} + \textcolor{#3DBBE9}{B_n} \textcolor{#ffb764}{\sin(nx)} \right)
Hallar cierto coeficiente:
vem=n=1vnenem\overrightarrow{v} \cdot \overrightarrow{e_{\textcolor{#FF6040}m}} = \sum_{n=1}^{\infty} \textcolor{#3DBBE9}{v_n} \textcolor{#ffb764}{\overrightarrow{e_n}} \cdot \overrightarrow{e_{\textcolor{#FF6040}m}}
enem=δnm\overrightarrow{e_n} \cdot \overrightarrow{e_m} = \delta_{nm}
vem=n=1vnδnm\overrightarrow{v} \cdot \overrightarrow{e_{\textcolor{#FF6040}m}} = \sum_{n=1}^{\infty} \textcolor{#3DBBE9}{v_n} \delta_{\textcolor{#ffb764}n\textcolor{#FF6040}m} vem=vm\overrightarrow{v} \cdot \overrightarrow{e_{\textcolor{#FF6040}m}} = \textcolor{#FF6040}{v_m}
f(x)cos(mx)=n=1(Anc(nx)+Bns(nx))cos(mx)f(x) \cdot \cos(\textcolor{#FF6040}mx) = \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \textcolor{#ffb764}{c( n x ) } + \textcolor{#3DBBE9}{B_n} \textcolor{#ffb764}{s(nx)} \right)\cdot \cos(\textcolor{#FF6040}mx)
cos(nx)cos(mx)=(2π/2)δnm=πδnm\cos(nx) \cdot \cos(mx) = (2\pi /2) \delta_{nm} = \pi \delta_{nm}cos(nx)sin(mx)=0\cos(nx) \cdot \sin(mx) = 0sin(nx)sin(mx)=(2π/2)δnm=πδnm\sin(nx) \cdot \sin(mx) = (2\pi /2) \delta_{nm}= \pi \delta_{nm}
f(x)cos(mx)=n=1(Anπδnm+Bn0)f(x) \cdot \cos(\textcolor{#FF6040}mx) = \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \pi \delta_{\textcolor{#ffb764}n\textcolor{#FF6040}m} + \textcolor{#3DBBE9}{B_n}0 \right)f(x)cos(mx)=n=1Anπδnmf(x) \cdot \cos(\textcolor{#FF6040}mx) = \sum_{n=1}^{\infty } \textcolor{#3DBBE9}{A_n}\pi \delta_{\textcolor{#ffb764}n\textcolor{#FF6040}m} f(x)cos(mx)=Amπf(x) \cdot \cos(\textcolor{#FF6040}mx) = \textcolor{#FF6040}{A_m} \pi

De forma general para hallar los coeficientes de Fourier
f(x)=n=0(Ancos(nx)+Bnsin(nx))f(x) = \sum_{n=0}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \textcolor{#ffb764}{\cos( n x )} + \textcolor{#3DBBE9}{B_n} \textcolor{#ffb764}{\sin(nx)} \right)
T=2πω  , x(0,T)T=\frac{2\pi}{\omega} \ \ , \ x \in (0,T)
f(x)=A0cos(2(0)πxT)+B0sin(2(0)πxT)+n=1(Ancos(2nπxT)+Bnsin(2nπxT))\small f(x) = A_0 \cos(\frac{2 (0)\pi x}{T}) + B_0\sin(\frac{2 (0)\pi x}{T})+ \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \textcolor{#ffb764}{\cos( \frac{2n \pi x}{T})} + \textcolor{#3DBBE9}{B_n} \textcolor{#ffb764}{\sin(\frac{2n \pi x}{T})} \right)f(x)=A0(1)+B0(0)+n=1(Ancos(2nπxT)+Bnsin(2nπxT))\small f(x) = A_0 (1) + B_0(0)+ \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \textcolor{#ffb764}{\cos( \frac{2n \pi x}{T})} + \textcolor{#3DBBE9}{B_n} \textcolor{#ffb764}{\sin(\frac{2n \pi x}{T})} \right)f(x)=A0+n=1(Ancos(2nπxT)+Bnsin(2nπxT))\large f(x) = A_0 + \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \textcolor{#ffb764}{\cos( \frac{2n \pi x}{T})} + \textcolor{#3DBBE9}{B_n} \textcolor{#ffb764}{\sin(\frac{2n \pi x}{T})} \right)
Hallando AnA_n
f(x)cos(2mπxT)=A0cos(2mπxT)1+n=1(AnT2δnm+Bn0)f(x) \cdot \cos(\frac{2m \pi x}{T}) = A_0 \cos(\frac{2m \pi x}{T}) \cdot 1 + \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} \frac{T}2 \delta_{nm} + \textcolor{#3DBBE9}{B_n} 0 \right)f(x)cos(2mπxT)=AmT2f(x) \cdot \cos(\frac{2m \pi x}{T}) = A_m \frac{T}2
2T0Tcos(2nπxT)f(x)dx=An\frac{2}{T} \int^{T}_0 \cos(\frac{2n \pi x}{T}) f(x) dx= A_n

Hallando BnB_n
f(x)sin(2mπxT)=A0sin(2mπxT)1+n=1(An0+BnT2δnm)f(x) \cdot \sin(\frac{2m \pi x}{T}) = A_0 \sin(\frac{2m \pi x}{T}) \cdot 1 + \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} 0 + \textcolor{#3DBBE9}{B_n} \frac{T}{2} \delta_{nm} \right)f(x)sin(2mπxT)=BmT2f(x) \cdot \sin(\frac{2m \pi x}{T}) = B_m \frac{T}{2}0Tsin(2mπxT)f(x)dx=BmT2 \int^{T}_0 \sin(\frac{2m \pi x}{T}) f(x) dx= B_m \frac{T}{2}
2T0Tsin(2nπxT)f(x)dx=Bn\frac{2}{T} \int^{T}_0 \sin(\frac{2n \pi x}{T}) f(x) dx= B_n

Hallando A0A_0
f(x)1=A01+n=1(An0+Bn0)f(x) \cdot 1 = A_0 \cdot 1 + \sum_{n=1}^{\infty } \left( \textcolor{#3DBBE9}{A_n} 0 + \textcolor{#3DBBE9}{B_n} 0 \right)f(x)1=A011f(x) \cdot 1 = A_0 1 \cdot 10T1f(x)dx=A00T1dx=A0(T0)dx=AT \int^{T}_0 1 f(x) dx= A_0 \int^{T}_0 1 dx = A_0 (T-0) dx = A T
1T0T1f(x)dx=A0\frac{1}{T} \int^{T}_0 1 f(x) dx= A_0

"Complejizando" la serie de Fourier

f(x)=n=0(Ancos(nx)+Bnsin(nx))f(x) = \sum_{n=0}^{\infty } \left( A_n \cos( n x )+B_n\sin( n x) \right)
cos(nx)=einx+einx2\cos(nx) = \frac{e^{i n x} + e^{-i n x}}{2}sin(nx)=einxeinx2i\sin(nx) = \frac{e^{i n x} - e^{-i n x}}{2i}
f(x)=n=0(Aneinx+einx2+Bneinxeinx2i)f(x) = \sum_{n=0}^{\infty } \left( A_n \frac{e^{i n x} + e^{-i n x}}{2} + B_n \frac{e^{i n x} - e^{-i n x}}{2i} \right)f(x)=n=0(An2einx+An2einx+Bn2ieinxBn2ieinx)f(x) = \sum_{n=0}^{\infty } \left( \frac{A_n}{2} e^{i n x} + \frac{A_n}{2} e^{-i n x} + \frac{B_n}{2i} e^{i n x} - \frac{B_n}{2i} e^{-i n x} \right)f(x)=n=0((An2+Bn2i)einx+(An2Bn2i)einx)f(x) = \sum_{n=0}^{\infty } \left( \left( \frac{A_n}{2} + \frac{B_n}{2i} \right) e^{i n x} + \left( \frac{A_n}{2} - \frac{B_n}{2i} \right) e^{-i n x} \right)

Recordando el conjugado

f(x)=n=0((An2+Bn2i)einx+(An2+Bn2i)einx)f(x) = \sum_{n=0}^{\infty } \left( \textcolor{#80BBFF}{\left( \frac{A_n}{2} + \frac{B_n}{2i} \right) e^{i n x} } + \overline{ \textcolor{#80BBFF}{ \left( \frac{A_n}{2} + \frac{B_n}{2i} \right) e^{i n x} } } \right)

Aquí entiende al n como el ángulo, de tal forma que:

arg(z)=narg(zˉ)=n\arg( z )= n ⇔ \arg( \bar{z} )= -n

f(x)=n=0(An2+Bn2i)einx+n=0(An2+Bn2i)einxf(x) = \sum_{n=0}^{\infty } \textcolor{#80BBFF}{\left( \frac{A_n}{2} + \frac{B_n}{2i} \right) e^{i n x} } + \sum_{n=0}^{\infty } \overline{ \textcolor{#80BBFF}{ \left( \frac{A_n}{2} + \frac{B_n}{2i} \right) e^{i n x} } } f(x)=n=0(An2+Bn2i)einx+n=1(An2+Bn2i)einxf(x) = \sum_{n=0}^{\infty } \textcolor{#80BBFF}{\left( \frac{A_n}{2} + \frac{B_n}{2i} \right) e^{i n x} } + \sum_{n=-1}^{-\infty } \textcolor{#80BBFF}{ \left( \frac{A_n}{2} + \frac{B_n}{2i} \right) e^{i n x} } f(x)=n=(An2+Bn2i)einxf(x) = \sum_{n=-\infty}^{\infty } \textcolor{#80BBFF}{\left( \frac{A_n}{2} + \frac{B_n}{2i} \right) e^{i n x} }
cn=(An2+Bn2i)einxc_n = \left( \frac{A_n}{2} + \frac{B_n}{2i} \right) e^{i n x}
y asıˊ\text{y así}
cn=cn=(An2Bn2i)einx c_{-n} = \overline{c_n}= \left( \frac{A_n}{2} - \frac{B_n}{2i} \right) e^{-i n x}

f(x)=n=Cneinxf(x) = \sum_{n=-\infty}^{\infty} C_n e^{i n x}
Cn=1T0Tf(x)einxdxC_n = \frac{1}{T} \int_0^T f(x) e^{-i n x} dx

Normalizando

Cn=1T0Tf(x)ei2πxn/TdxC_n = \frac{1}{T} \int_0^T f(x) e^{-i 2\pi x n /T} dx

"Continuizando" la serie de Fourier

Válido cuando TT \to \infty

f(t)=n=Cneintf(t) = \sum_{n=-\infty}^{\infty} C_n e^{i n t}f(t)=n=Cnei2πtn/Tf(t) = \sum_{n=-\infty}^{\infty} C_n e^{i 2 \pi t n / T}
w=n/Tw = n/T
f(t)=n=Cwei2πtwf(t) = \sum_{n=-\infty}^{\infty} C_w e^{i 2 \pi t w}f(t)=C(w)ei2πtwdwf(t) = \int_{-\infty}^{\infty} C(w) e^{i 2\pi t w} dwf(t)ei2πtw=C(w)ei2πtwei2πtwdwf(t) \textcolor{#FF90FF}{e^{ - i 2\pi t \textcolor{#FF9055}{w'}}} = \int_{-\infty}^{\infty} C(w) e^{i 2\pi t w} \textcolor{#FF90FF}{e^{ - i 2\pi t \textcolor{#FF9055}{w'}}} dw+f(t)ei2πtwdt=C(w)ei2πtwei2πtwdwdt\int_{-\infty}^{+\infty} f(t)\textcolor{#FF90FF}{e^{ - i 2\pi t \textcolor{#FF9055}{w'}}} dt= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} C(w) e^{i 2\pi t w}\textcolor{#FF90FF}{e^{ - i 2\pi t \textcolor{#FF9055}{w'}}} dw dtei2πtwei2πtwdt=ei2πtwei2πtwdt e^{ i 2\pi t w} *\textcolor{#FF90FF}{e^{ - i 2\pi t \textcolor{#FF9055}{w'}}} dt= \int_{-\infty}^{\infty} e^{i 2\pi t w}\textcolor{#FF90FF}{e^{ - i 2\pi t \textcolor{#FF9055}{w'}}} dtei2πtwei2πtwdt=δ(ww) e^{ i 2\pi t w} *\textcolor{#FF90FF}{e^{ - i 2\pi t \textcolor{#FF9055}{w'}}} dt= \delta(w-\textcolor{#FF9055}{w'})+f(t)ei2πtwdt=C(w)δ(ww)dw\int_{-\infty}^{+\infty} f(t)\textcolor{#FF90FF}{e^{ - i 2\pi t \textcolor{#FF9055}{w'}}} dt= \int_{-\infty}^{\infty} C(w) \delta(w-\textcolor{#FF9055}{w'}) dw +f(t)ei2πtwdt=C(w)\int_{-\infty}^{+\infty} f(t)\textcolor{#FF90FF}{e^{ - i 2\pi t \textcolor{#FF9055}{w'}}} dt= C(\textcolor{#FF9055}{w'})
F(w)=+f(t)ei2πtwdtF(w) = \int_{-\infty}^{+\infty} f(t)e^{ - i 2\pi t w} dt